SYLLABUS
Module 4
Advanced Graph Structures : Representation of graphs, Depth First and Breadth First Traversals, Topological Sorting, Strongly connected Components and Biconnected Components Minimum Cost Spanning Tree algorithms- Prim’s Algorithm, Kruskal’ Algorithm,. Shortest Path Finding algorithms – Dijikstra’s single source shortest paths algorithm

ADVANCED GRAPH STRUCTURES
A graph is a pictorial representation of a set of objects where some pairs of objects are connected by links. The interconnected objects are represented by points termed as vertices, and the links that connect the vertices are called edges.
Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges, connecting the pairs of vertices. Take a look at the following graph −
[image: Graph Basics]
In the above graph,
V = {a, b, c, d, e}
E = {ab, ac, bd, cd, de}

GRAPH DATA STRUCTURE
Mathematical graphs can be represented in data structure. We can represent a graph using an array of vertices and a two-dimensional array of edges. Before we proceed further, let's familiarize ourselves with some important terms −
· Vertex − Each node of the graph is represented as a vertex. In the following example, the labeled circle represents vertices. Thus, A to G are vertices. We can represent them using an array as shown in the following image. Here A can be identified by index 0. B can be identified using index 1 and so on.
· Edge − Edge represents a path between two vertices or a line between two vertices. In the following example, the lines from A to B, B to C, and so on represents edges. We can use a two-dimensional array to represent an array as shown in the following image. Here AB can be represented as 1 at row 0, column 1, BC as 1 at row 1, column 2 and so on, keeping other combinations as 0.
· Adjacency − Two node or vertices are adjacent if they are connected to each other through an edge. In the following example, B is adjacent to A, C is adjacent to B, and so on.
· Path − Path represents a sequence of edges between the two vertices. In the following example, ABCD represents a path from A to D.
[image: graph]

REPRESENTATION OF GRAPHS
The following two are the most commonly used representations of a graph.
1. Adjacency Matrix
2. Adjacency List
ADJACENCY MATRIX:
Adjacency Matrix is a 2D array of size V x V where V is the number of vertices in a graph. Let the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there is an edge from vertex i to vertex j. Adjacency matrix for undirected graph is always symmetric. Adjacency Matrix is also used to represent weighted graphs. If adj[i][j] = w, then there is an edge from vertex i to vertex j with weight w.

[image:]

The adjacency matrix for the above example graph is:

[image:]

ADJACENCY LIST:
An array of lists is used. The size of the array is equal to the number of vertices. Let the array be an array[]. An entry array[i] represents the list of vertices adjacent to the ith vertex. This representation can also be used to represent a weighted graph. The weights of edges can be represented as lists of pairs. Following is the adjacency list representation of the above grap[image: Adjacency List Representation of Graph]

DEPTH FIRST TRAVERSAL[image:][image:][image:]

BREADTH FIRST TRAVERSAL
[image:]
[image:]
[image:]

[image:]
[image:]

[image:]
[image:]

[image:]
[image:]
[image:]
[image:]
BICONNECTED COMPONENTS

	A biconnected component of a graph is a connected subgraph that cannot be broken into disconnected pieces by deleting any single node . That is , a Graph G is biconnected if and only if it contains no articulation point.
An articulation point is a node of a graph whose removal would cause an increase in the number of connected components.in other words, A vertex in a graph G(connected graph) is an articulation point if and only if we delete the vertex v and all its edges then it disconnect the graph into 2 or more non empty components
	4
1

	3

5

2

	
We can delete any vertex and its associates edges that result in two or more connected subgraph , the given example :
-If we delete the vertex 1 then it result in a single connected graph
.-If we delete vertex 3 then it result in 2 subgraph then,vertex 3 is an Articulation point,So this graph is not biconnected.
Eg: for biconnected graph
1
3

5

4
2

Q;Find the articulation point in a graph
Step 1: Construct depth first traversal and provide number for each node according to the
 Traversal.Find the lowercase number of parent for each node.
Step 2:If a root node has atleast 2 children then it will be articulation point.Also,leafnode has no Articulation point.

Eg:
2
1
4

3

6
5

Dfs for the above graph
 d=11[image:][image:]

4[image:]

	d=2
3

 d=3

6
2
5

d=4
 d=5 d=6

	vertices
	1
	2
	3
	4
	5
	6

	Discovery time(d)
	1
	6
	3
	2
	4
	5

	Lowest discovery number(L)
	1
	1
	1
	1
	3
	3

Here leaf node has no articulation point so , leaf node is biconnected.
To find the articulation point consider 2 edges u,v.here,u is the parent and v is the child
then u,v become an articulation point if and only if
 L[v]>=d[u]
If this satisfies then u is an articulation point.
Consider the next vertex v=4 and u=3
· L [4]>=d[3]
 1>=3
 Here the condition is note satisfied.
Consider the next 2 vertex v=5 and u=3
· L[5]>=d[3]
 3>=3
Here the condition is satisfied .therefore, u is an articulation point.so,3 is an articulation point.

Minimum cost spanning tree
 A Minimum Spanning Tree (MST) works on graphs with directed and weighted (non-negative costs) edges. Consider a graph G with n vertices. The spanning tree is a subgraph of graph G with all its n vertices connected to each other using n-1 edges. Thus, there is no possibility of a cycle with the subgraph. If the spanning tree does have a cycle, then it is advisable to remove any one edge, probably the one with the highest cost. The spanning tree with the least sum of edge weights is termed as a MST. It is widely used in applications such as laying of power cables across the city, connecting all houses using the least length of power cables. Here, the weight of each edge is the length of the cable, and the vertices are houses in the city. The most common algorithms to find the minimum cost spanning tree are Prim's algorithm and Kruskal's algorithm. Figure 8.11 shows the minimum cost spanning tree for an undirected-weighted graph.

[image: https://static.packt-cdn.com/products/9781786465153/graphics/B05666_08_11.jpg]

1 .prim’s Algorithum

Prim's Algorithm is used to find the minimum spanning tree from a graph. Prim's algorithm finds the subset of edges that includes every vertex of the graph such that the sum of the weights of the edges can be minimized.
Prim's algorithm starts with the single node and explore all the adjacent nodes with all the connecting edges at every step. The edges with the minimal weights causing no cycles in the graph got selected.
The algorithm is given as follows.

Algorithm
· Step 1: Select a starting vertex
· Step 2: Repeat Steps 3 and 4 until there are fringe vertices
· Step 3: Select an edge e connecting the tree vertex and fringe vertex that has minimum weight
· Step 4: Add the selected edge and the vertex to the minimum spanning tree T
[END OF LOOP]
· Step 5: EXIT
Example :
Construct a minimum spanning tree of the graph given in the following figure by using prim's algorithm.
[image: Prim's Algorithm]
Solution

· Step 1 : Choose a starting vertex B.
· Step 2: Add the vertices that are adjacent to A. the edges that connecting the vertices are shown by dotted lines.
· Step 3: Choose the edge with the minimum weight among all. i.e. BD and add it to MST. Add the adjacent vertices of D i.e. C and E.
· Step 3: Choose the edge with the minimum weight among all. In this case, the edges DE and CD are such edges. Add them to MST and explore the adjacent of C i.e. E and A.
· Step 4: Choose the edge with the minimum weight i.e. CA. We can't choose CE as it would cause cycle in the graph.
The graph produces in the step 4 is the minimum spanning tree of the graph shown in the above figure.
The cost of MST will be calculated as;
cost(MST) = 4 + 2 + 1 + 3 = 10 units.
[image: Prim's Algorithm]

Next →← Prev
2. Kruskal's Algorithm
Kruskal's Algorithm is used to find the minimum spanning tree for a connected weighted graph. The main target of the algorithm is to find the subset of edges by using which, we can traverse every vertex of the graph. Kruskal's algorithm follows greedy approach which finds an optimum solution at every stage instead of focusing on a global optimum.
 The Kruskal's algorithm is given as follows.
· Step 1: Remove all loops and parallel edges.
· Step 2: Arrange all edges in the increasing order of their weight.
· Step 3: Add the edges which have least weight.

Example :
Apply the Kruskal's algorithm on the graph given as follows.

[image: Kruskal's Algorithm]

Solution:
Start constructing the tree;
Add AB to the MST;

[image: Kruskal's Algorithm]

Add DE to the MST;

[image: Kruskal's Algorithm]

Add BC to the MST;

[image: Kruskal's Algorithm]
[image: Kruskal's Algorithm]

The next step is to add AE, but we can't add that as it will cause a cycle.
The next edge to be added is AC, but it can't be added as it will cause a cycle.
The next edge to be added is AD, but it can't be added as it will contain a cycle.
Hence, the final MST is the one which is shown in the step 4.
the cost of MST = 1 + 2 + 3 + 4 = 10.

[bookmark: _GoBack][image:]

[image:]

[image:]
25

image3.png

image4.png

image5.png

image6.png
T3 Data Structure - Depth First Trau: X

<« C @ tutorialspoint.com/data = orithms/dep aversalhtn
Apps o Gmal » YouTube & Maps @B B3 Transiate l transporthelp—Fir. 4 transporthelp-Da.. [mhdameen/renty.. W transport-help— H hitpsi//bitbucketorg
@ DSA- Gircular Linked List

then to F and lastly to C. It employs the following rules.

= Rule 1 - Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push itin a
stack. Apno Ke Liye

0 TEA-SEEs = Rule 2 - If n0 adjacent vertex is found, pop up a vertex ffom the stack. (It will pop [kt
o DSA- Expression Parsing up allthe vertices from the stack, which do not have adjacent vertices) 98.15% Claims Settlement Ratia
o DSA- Queue = Rule 3 - Repeat Rule 1 and Rule 2 untilthe stack is empty -
Step Traversal Description
[Life Bh KiBaat
o DSA- Linear Search 1 % oeEnce
o DSA-Binary Search
o DSA- Interpolation Search Pass Your
stac PMP® Exam In 2021
PSR e e (» G ° Initalize the stack
\ / Live Virtwal Classes
. Gt A
PMI's Official "o~
o b Stack . c ‘On-Demand
@ DSA- Sorting Algorithms. s et ourse Training
64,000 Students
o DSA-Bubble Sort 2 = Worldwide -

@ DSA- Selection Sort adjacent node from S

Ne have PP . gt e of Proec Monsgerment s, .

o DSA- Insertion Sort 2 Mark $ as visited and put it onto the - FREE
/ \ stack. Explore any unvisited
o DSA - Merge Sort three nodes and we can pick any of

A s c
DSA- Shell Sort ; T them. For this example, we shall K
g - Shell So take the node in an alphabetical
top+ S
o {

@ DSA - Quick Sort order.

Stack

image7.png
T Data Structure - Depth FirstTrav: X +

& c

Apps 41 Gmail

8 tutorialspoint.com;

 YouTube % Maps

@ DSA- Graph Data Structure
@ DSA- Depth First Traversal
@ DSA - Breadth First Traversal

© DSA- Tree Data Structure
o DSA- Tree Traversal

o DSA- Binary Search Tree
o DSA-AVLTree

o DSA- Spanning Tree

o DSA-Heap

@ DSA-Recursion Basics
@ DSA-Tower of Hanoi

@ DSA - Fibonacci Series

@ DSA- Questions and Answers
@ DSA- Quick Guide

@ DSA- Useful Resources

@ News

83 Transiate

N
D
¢ W \
1%
BN
%

1 transporthelp — Fir..

(o

o

(o

1 transport-help~Da...

top+|| A

top+ | D

Stack

top+{| B

Stack

mhdameen / rent-y...

Mark A as visited and put it onto the
stack. Explore any unvisited
adjacent node from A. Both § and D
are adjacent to A but we are
concerned for unvisited nodes only.

Visit D and mark it as visited and put
onto the stack. Here, we have B and
C nodes, which are adjacent to D
and both are unvisited. However, we
shall again choose in an alphabetical
order.

We choose B, mark it as visited and
put onto the stack. Here B does not
have any unvisited adjacent node.
So, we pop B from the stack

1 transport-help—

hitpsi//bitbucketorg

Apno Ke Liye
Do Kadam Aur

98.15% Claims Settlement Ratio

Life

Insurance Bharose Ki Baat

Apno Ke Liye
Do Kadam Aur

98.15% Claims Settlement Ratio

Life

Insurance Bharose Ki Baat

image8.png
T Data Structure - Depth FirstTrav: X +

@

C & tutorialspoint.com

Apps M Gmail > YouTube % Maps

@ DSA- Useful Resources

@ DSA- Discussion

& UPSC IAS Exams Notes
o Developers Best Practices
& Questions and Answers

o Effective Resume Witing
o HR Interview Questions

& Computer Glossary

@ Who is Who

@ News

8 Transiate transport-help— Fir.

=y

,\C
/)
;s,\c

until the stack is empty.

here 2

@ Previous Page & Print Page

1 transport-help~Da...

top+ | D

top+| ©

As C does not have any unvisited adjacent node so we keep popping the stack until we find
anode that has an unvisited adjacent node. In this case, there's none and we keep popping

Stack

mhdameen rent.y... l transport-help— H

We check the stack top for retum to

the previous node and check if it has
any unvisited nodes. Here, we find D
to be on the top of the stack

Only unvisited adjacent node is from
Diis C now. So we visit C, mark it as
visited and put it onto the stack.

To know about the implementation of this algorithm in C programming language, click

Next Page ®

hitpsi//bitbucketorg

Apno Ke Liye
Do Kadam Aur

98.15% Claims Settlement Ratio

Life

Insurance Bharose Ki Baat

Apno Ke Liye
Do Kadam Aur

98.15% Claims Settlement Ratio

Life

Insurance Bharose Ki Baat

image9.png
T3 Data Structure - Breadth First Tie X

< C @ tutorialspoint.com/data < o aversalhn

Apps 1 Gmail » YouTube A Maps @8 B3 Transiate J transporthelp—Fir. W transport-help-Da... hitpsi//bitbucketorg

& DSA- Environment Setup

Breadth First Search (BFS) algorithm traverses a graph in a breadthward motion and uses a
queue to remember to get the next vertex to start a search, when a dead end occurs in any
iteration.

o DSA - Algorithms Basics.

& DSA-Asymptotic Analysis

. Protect Your Family As Quickly As
o DSA - Greedy Algorithms s You Order A Meal
i Simply look up an online menu choose
o DER=ERTiazm Crnar 3 Jour Selection and hit bay, s that
o DSA- Dynamic Programming c
&
\
6
" Pass Your
o DSA- Data Structure Basics : T]
o DSA- Array Data Structure D
e
o s
PMI's Official .o
‘On-Demand
Course Training
o DSA- Linked List Basics o
o DSA- Doubly Linked List Workiukls 222 value
As in the example given above, BFS algorithm traverses from Ato B to E to F first then to C FREE
o DEA=Ererr i = and G lastly to D. It employs the following rules.
= Rule 1 - Visit the adjacent unvisited vertex. Mark it as visited. Display it Insertitin a
queve

o DSA- Stack 5 Rule 2 - If no adjacent vertex is found, remove the first vertex from the queue.

o DR EnrEseriFEsTy 5 Rule 3 - Repeat Rule 1 and Rule 2 until the queue is empty.

o DSA- Queue
| Step Traversal Description

image10.png
T3 Data Structure - Breadth First Tie X

< C & tutorialspoint.com

Apps M Gmail > YouTube % Maps

B3 Transiate l transporthelp—Fir. 4 transporthelp-Da.. [mhdameen/renty.. W transport-help— H hitpsi//bitbucketorg

o DSA- Stack
& DSA - Expression Parsing
o DSA-Queue

 DSA- Linear Search
o DSA- Binary Search

& DSA- Interpolation Search
& DSA- Hash Table

& DSA- Sorting Algorithms.
& DSA-Bubble Sort

o DSA- Insertion Sort

& DSA- Selection Sort

o DSA- Merge Sort

& DSA- Shell Sort

& DSA- Quick Sort

DSA - Graph Data Structure

= Rule 1 - Visit the adjacent unvisited vertex. Mark it as visited. Display it Insert it in a
queue

= Rule 2 - If no adjacent vertex is found, remove the first vertex from the queue.

= Rule 3 - Repeat Rule 1 and Rule 2 unti the queue is empty.

S EEEED DescHpion Protect Your Family As Quickly As

You Order A Meal

s Simply look up an online menu choose
your selection and hit buy. It's that

c Initialize the queue

Pass Your
—— PMP® Exam In 2021

Live Virtwal Classes

AN
7
\ Course S
S
AN

A ey
2 s PMI's Official "o
We start from visiting § (starting e
A s o
4 node), and mark it as visited =
2 Queue
3

We then see an unvisited adjacent
node from §. In this example, we
A B I3 have three nodes but alphabeticall

image11.png
T Data Structure - Breacth First - X+

@

@ DSA- Quick Guide

C & tutorialspoint.com

Apps 11 Gmail '+ YouTube & Maps

DSA Useful Resources

- Questions and Answers

@ DSA- Useful Resources

o DSA- Discussion

& UPSC IAS Exams Notes
o Developers Best Practices
& Questions and Answers

o Effective Resume Witing
o HR Interview Questions

& Computer Glossary

@ Who is Who

g

@ News B9 Tansate 4 transport-help— transporthelp ~Da... [7 mhdameen/ rent.y. transport-help — Ho.

Now, § is left with no unvisited Protect Your Family As Quickly As
d adjacent nodes. So, we dequeue ‘You Order A Meal
B and find A Simply look up an online menu choose
your selection and hit buy. It's that...
c s =
G Queue b
! Pass Your
PMP® Exam
From A we have D as unvisited A —
adjacent node. We mark it as visited c
and enqueue it
o c s
v 64,000 Students

Worldwide

Learn More

At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm we
keep on dequeuing in order to get all unvisited nodes. When the queue gets emptied, the
program is over.

The implementation of this algorithm in C programming language can be seen here

@ Previous Page & Print Page Next Page ©

Advertisements

image12.jpg

image13.jpg
R
Ve
theore g ad wm/|¢ e edges

: phalz. A ijw’

@* dw;vc»,

image14.jpg
L ald

2 ,;u(._l,
o

image15.jpg

image16.jpg
ij (otwt ,,‘;m

A _stengls J«mu(a{ M,mam.u af a olizeched.

image17.jpg

image18.jpg

image19.jpg

image20.emf

4

image21.emf

4

image22.emf

4

image23.jpeg

image24.png

image25.png
Step 1 Step 2 Step 3

Step 4 Step 5

image26.png

image27.png

image28.png

image29.png

image30.png
SHORTEST PATH FINDING ALGORITHM
Itis the shortest distance path from one source to another verticas

- All pair shortest path

- Singlesource

To find the shortest path n a graph. There are 2 types ofalgorithm to find
Shortestpath.

1. Allpsirshortestpath
“To find the shortest path from each vertextoevery oher vrtex using the
algorithn Floyd warshall's Algorithm,

2 Singlesourceshortest path
To findthe shortes path from asingle source vertex u’toa destination
vertex v using thealgorithm Dilkstra's Algorithn,

Distra's Algorithm

Step I: Assign every node ntentative distance nfiie.

Step 2ssetinitialnode as currentand othernodes as unvisited.

Step3: For current node considerall other unvisited nodes and calculate tentative
distance. compare current distance with calculated distance and assign the smaller

value.
)+ e (o) <dev)
A =d@)+e(u,v)
‘Step 4: When al the neighbors ar considered of the current node makei visited.

Step 5: When the destination nodeis visited then we can stop the process.

image31.png
Let us undersiand with the following example:
s

Zero s the source vertex.
Assign a tentative distance.

‘The set sptSet s initally empty and distances assigned 0 vertices are (0, INF,
INF, INF, INF, INF, INF, INF} where INF indicates infinite. Now pick the vertex
with minimum distance value. The vertex 0 is picked, includeitin sptSet.

So sptSet becomes (0}. Afte including 0 to sptSet, update distance values of its
‘adacent vertices. Adacent vertices of 0 are 1and 7. The distance values of 1
and 7 are updated as 4 and 8. Following subgraph shows verices and their
distance values, only the vertces with finie distance values are shown. The
verices includedin SPT are shown in green colour.

Pick the vertex with minimum distance value and not already included in SPT
(notin SpISET). The vertex 1 is picked and added to spiSet. So spiSet now
becomes {0, 1). Update the disiance values of adlacent verices of 1. The
distance value of vertex 2 becomes 12.

image32.png
/6—6

Pick the vertex with minimum distance value and not already included in SPT
(notin SpISET). Vertex 7 is picked. So spiSet now becomes (0, 1, 7). Update.
the distance values of adjacent vertces of 7. The distance value of vertex 6 and
8 becomes finite (15 and 8 respectively)

-1
GA

Pick the vertex with minimum distance value and not already included in SPT
(notin SpISET). Vertex 6 is picked. So spiSet now becomes (0, 1, 7, 6}. Update
the distance values of adjacent vertces of 6. The distance value of vertex 5 and
8 are updated

KR

We repeat the above steps unl sptSet does include a verices of given graph
Finally, we get the following Shortest Path Tree (SPT).

image1.jpeg

image2.jpeg

